广义相对论简介

助力高考-秒杀二级结论-《高中物理手册》第三版上市!

广义相对论是现代物理中基于相对性原理利用几何语言描述的引力理论。该理论由阿尔伯特·爱因斯坦等人自1907年开始发展,最终在1915年基本完成。广义相对论将经典的牛顿万有引力定律与狭义相对论加以推广。在广义相对论中,引力被描述为时空的一种几何属性(曲率),而时空的曲率则通过爱因斯坦场方程和处于其中的物质及辐射的能量与动量联系在一起。

从广义相对论得到的部分预言和经典物理中的对应预言非常不同,尤其是有关时间流易、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——广义相对论虽然并非当今描述引力的唯一理论,但却是能够与实验数据相符合的最简洁的理论。不过仍然有一些问题至今未能解决。最为基础的即是广义相对论和量子物理的定律应如何统一以形成完备并且自洽的量子引力理论。

爱因斯坦的广义相对论理论在天体物理学中有着非常重要的应用。比如它预言了某些大质量恒星终结后,会形成时空极度扭曲以至于所有物质(包括光)都无法逸出的区域,黑洞。有证据表明恒星质量黑洞以及超大质量黑洞是某些天体例如活动星系核和微类星体发射高强度辐射的直接成因。光线在引力场中的偏折会形成引力透镜现象,这使得人们可能观察到处于遥远位置的同一个天体形成的多个像。广义相对论还预言了引力波的存在。引力波已经由激光干涉引力波天文台在2015年9月直接观测到。此外,广义相对论还是现代宇宙学中的膨胀宇宙模型的理论基础。

历史


爱因斯坦解释广义相对论的手稿扉页

1905年爱因斯坦发表狭义相对论后,他开始着眼于如何将引力纳入狭义相对论框架的思考。以一个处在自由落体状态的观察者的理想实验为出发点,他从1907年开始了长达八年的对引力的相对性理论的探索。在历经多次弯路和错误之后,他于1915年11月在普鲁士科学院上作了发言,其内容正是著名的爱因斯坦引力场方程。这个方程描述了处于时空中的物质是如何影响其周围的时空几何,并成为了爱因斯坦的广义相对论的核心。

爱因斯坦的引力场方程是一个二阶非线性偏微分方程组,在数学上想要求得其方程的解是一件非常困难的事。爱因斯坦运用了很多近似方法,从引力场方程得出了很多最初的预言。不过很快天才的天体物理学家卡尔·史瓦西就在1916年得到了引力场方程的第一个非平庸精确解——史瓦西度规,这个解是研究星体引力坍缩的最终阶段,即黑洞的理论基础。在同一年,将史瓦西几何扩展到带有电荷的质量的研究工作也开始进行,其最终结果就是雷斯勒-诺斯特朗姆度规,其对应的是带电荷的静态黑洞。1917年爱因斯坦将广义相对论理论应用于整个宇宙,开创了相对论宇宙学的研究领域。考虑到同时期的宇宙学研究中静态宇宙的学说仍广获接受,爱因斯坦在他的引力场方程中添加了一个新的常数,后被人们称为宇宙常数项,以求得和当时的“观测”相符合。然而到了1929年,哈勃等人的观测表明我们的宇宙处在膨胀状态,而相应的膨胀宇宙解早在1922年就已经由亚历山大·弗里德曼从他的弗里德曼方程(同样由爱因斯坦重力场方程推出)得到,这个膨胀宇宙解不需要任何附加的宇宙常数项。比利时神父勒梅特应用这些解构造了宇宙大爆炸的最早模型,模型预言宇宙是从一个高温高致密状态演化来的。爱因斯坦其后承认,添加宇宙常数项在方程里是他一生中犯下的最大错误。

在那个时代,广义相对论被视为一种古怪的异论,但由于它和狭义相对论相融,并能够解释很多牛顿引力无法解释的现象,因此它很明显优于牛顿理论。爱因斯坦本人在1915年证明了广义相对论能够解释水星轨道的反常近日点进动现象,其过程不需要任何附加参数(所谓“敷衍因子”)。另一个著名的实验验证是由亚瑟·爱丁顿爵士率领的探险队在非洲的普林西比岛观测到的日食时的光线在太阳引力场中的偏折,其偏折角度和广义相对论的预言完全相符(是牛顿理论预言的偏折角的两倍),这一发现随后为全球报纸所竞相报导,一时间使爱因斯坦的理论名声赫赫。但是直到1960年至1975年间,广义相对论才真正进入了理论物理和天体物理主流研究的视野,这一时期被人们称作广义相对论的黄金时代。物理学家逐渐理解了黑洞的概念,并能够通过天体物理学的性质从类星体中识别黑洞。在太阳系内能够进行的更精确的广义相对论的实验验证进一步展示了广义相对论非凡的预言能力,而相对论宇宙学的预言也同样经受住了实验观测的检验。

引力时间膨胀和引力红移


光波从一个大质量物体表面出射时频率会发生红移

如果等效原理成立,则可得到引力会影响时间流易的结论。射入引力势阱中的光会发生蓝移,而相反从势阱中射出的光会发生红移;归纳而言这两种现象被称作引力红移。更一般地讲,当有一个大质量物体存在时,对于同一个过程在距离大质量物体更近时会比远离这个物体时进行得更慢,这种现象叫做引力时间膨胀。

引力红移已经在实验室中及在天文观测中得到证实和测量,而地球引力场中的引力时间延缓效应也已经通过原子钟进行过多次测量。当前的测量表明地球引力场的时间延缓会对全球定位系统的运行产生一定影响。这种效应在强引力场中的测试是通过对脉冲双星的观测完成的,所有的实验结果都和广义相对论相符。不过在当前的测量精度下,人们还不能从中判断这些观测到底更支持广义相对论还是同样满足等效原理的其他替代理论。

光线偏折和引力时间延迟

从光源(图中蓝点表示)发射出的光线在途径一个致密星体(图中灰色区域表示)时发生的光线偏折

广义相对论预言光子的路径在引力场中会发生偏折,即当光子途径一个大质量物体时路径会朝向物体发生弯曲。这种效应已经通过对来自遥远恒星或类星体的光线途径太阳时的路径观测得到证实。

这种现象(以及其他相关现象)的原因是光具有被称作类光的(或被称作零性的)测地线——相对于在经典物理中光的传播路线是直线,类光的(或零性的)测地线是广义相对论的相应概括,来源于狭义相对论中的光速不变原理。选取了合适的时空几何(例如黑洞视界外的史瓦西解,或后牛顿展开项)就可以进一步看到引力场对光的传播的影响,这种影响是纯粹广义相对论性的。即是说尽管从经典力学出发,通过计算中心质量对光子的经典散射也可以得到光线的偏折效应,但从这种经典方法得到的偏折角度只有广义相对论结果的一半。

和光线偏折现象密切相关的另一现象是引力时间延迟效应(或称作夏皮罗延迟效应),这种现象是指在引力场中光的传播时间要比无引力场的情形下要长,这种效应已经被多个观测成功证实。在参数化后牛顿形式中,对光线偏折和对时间延迟的测量共同决定了一个参数ϒ,这个参数表征了引力对时空几何的影响。

引力波

悬浮在空间中的静止粒子排列成的环

测试粒子受到引力波的作用
弱引力场和电磁场相比有一个重要类同之处:类似于随时间变化的电磁场会辐射电磁波,引力场也有可能会辐射引力波。引力波有如时空度规的涟漪,以光速在空间中传播。最简单的一类情形如右所示:排列成一个环状的自由悬浮粒子(上面静态图像),当有一束正弦引力波穿过这个环并朝向读者传播时,引力波会将这个环以一种具有特征性和旋律性的方式扭曲(下面动画)。由于爱因斯坦场方程是非线性的,强引力场中的任意强度的引力波不满足线性叠加原理。但在弱场情形下可采用线性近似,由于从遥远的天体辐射出的引力波到达地球时已经非常微弱,这时线性化的引力波已经足以精确描述其到达地球时的强度,其引起的空间距离的相对变化大约在10-21或更低。这些线性化的引力波是可以进行傅里叶分解的,对这些引力波信号进行的数据分析正是基于这个原理。

测试粒子受到引力波的作用

场方程的个别精确解能够在不借助任何近似条件的前提下描述引力波,如一束传遍整个空间的波列,以及所谓高蒂宇宙(多种充满引力波的膨胀宇宙的总称)。不过对于天体物理学意义上的引力辐射而言,例如黑洞双星的合并过程,后牛顿力学近似方法、微扰理论或数值相对论等近似途径是仅有的处理手段。

当前进展
在引力和宇宙学的研究中,广义相对论已经成为了一个高度成功的模型,并且到目前为止能够在不另加特例假设条件下,得到许多实验的验证。然而即便如此,仍然有证据显示这个理论并不完备:对量子引力的寻求以及时空奇点的现实性问题依然有待解决;实验观测得到的支持暗物质和暗能量存在的数据结果意味着对于建立新物理学的渴求。不过,广义相对论之中仍然充满了值得深度探索的可能性:数学相对论学家正在寻求理解奇点的本性,以及爱因斯坦场方程的基本属性;更具功能的电脑正在进行黑洞合并等更多的数值模拟;于2015年9月14日第一次直接观测到引力波之后 , 后续的竞赛与发展应用也正在持续中,人类希望借此能够在比至今能达到的强得多的引力场中创造更多检验这个理论的正确性的机会。在爱因斯坦发表他的理论一百年之后,广义相对论依然是一个高度活跃的研究领域。

转自维基百科


高中物理知识点总结

发表回复