核裂变

助力高考-秒杀二级结论-《高中物理手册》第三版上市!

核裂变(德语:Kernspaltung;英语:nuclear fission),是指由较重的(原子序数较大的)原子,主要是指铀或钚,裂变成较轻的(原子序数较小的)原子的一种核反应或放射性衰变形式。核裂变是由莉泽·迈特纳、奥托·哈恩及奥托·罗伯特·弗里施等科学家在1938年发现。原子弹以及核电站的能量来源都是核裂变。早期原子弹应用钚-239为原料制成。而铀-235裂变在核电站最常见。

235U 原子核的一种裂变过程,235U 原子核吸收一个中子,变成236U 原子核,然后236U 原子核裂变成二个快速运动的较小原子核,并释放三个中子,同时也会产生伽马射线(图中未绘出)

重核原子经中子撞击后,裂变成为两个较轻的原子,同时释放出数个中子,并且以伽马射线的方式释放光子。释放出的中子再去撞击其它的重核原子,从而形成链式反应而自发裂变。原子核裂变时除放出中子还会放出热,核电站用以发电的能量即来源于此。因此核裂变产物的结合能需大于反应物的的结合能。

核裂变会将化学元素变成另一种化学元素,因此核裂变也是核迁变的一种。所形成的二个原子质量会有些差异,以常见的可裂变物质同位素而言,形成二个原子的质量比约为3:2[1][2]。大部分的核裂变会形成二个原子,偶尔会有形成三个原子的核裂变,称为三裂变变,大约每一千次会出现二至四次,其中形成的最小产物大小介于质子和氩原子核之间。

现代的核裂变多半是刻意产生,由中子撞击引发的人造核反应,偶尔会有自发性的,因放射性衰变产生的核裂变,后者不需要中子的引发,特别会出现在一些质量数非常高的同位素,其产物的组成有相当的机率性甚至混沌性,和质子发射、α衰变、集群衰变等单纯由量子穿隧产生的裂变不同,后面这些裂变每次都会产生相同的产物。原子弹以及核电站的能量来源都是核裂变。核燃料是指一物质当中子撞击引发核裂变时也会释放中子,因此可以产生链式反应,使核裂变持续进行。在核电站中,其能量产生速率控制在一个较小的速率,而在原子弹中能量以非常快速不受控制的方式释放。

由于每次核裂变释放出的中子数量大于一个,因此若对链式反应不加以控制,同时发生的核裂变数目将在极短时间内以几何级数形式增长。若聚集在一起的重核原子足够多,将会瞬间释放大量的能量。原子弹便应用了核裂变的这种特性。制成原子弹所使用的重核含量,需要在90%以上。

核能发电应用中所使用的核燃料,铀-235的含量通常很低,大约在3%到5%,因此不会产生核爆。但核电站仍需要对反应堆中的中子数量加以控制,以防止功率过高造成堆芯熔毁的事故。通常会在反应堆的慢化剂中添加硼,并使用控制棒吸收燃料棒中的中子以控制核裂变速度。从镉以后的所有元素都能裂变。

核裂变时,大部分的裂变中子均是一裂变就立即释出,称为瞬发中子,少部分则在之后(一至数十秒)才释出,称为延迟中子。

简介

机制

诱导核裂变事件,其中的慢中子被铀235的原子核吸收,裂变成两个快速移动,原子量较小的元素(核裂变产物)及更多的中子。大部分的能量变成核裂变产物及中子的动能。

核裂变可以在没有中子撞击的情形下出现,这种核裂变称为自发裂变,是放射性衰变的一种,只出现在几种较重的同位素中。不过大部分的核裂变都是一种有中子撞击的核反应,反应物裂变为二个较小的原子核。核反应是依中子撞击的机制所产生,不会依照自发裂变中相对较固定的指数衰减及半衰期特性所控制。

现今已经知道许多种类的核反应,核裂变和其他核反应最大的不同点是核裂变是由中子撞击所产生,而产生的多个自由中子会撞击其他核子,会启动更多的核裂变,因此成为核连锁反应(链反应的一种),有时可以控制一些条件来调整核连锁反应的影响程度。

可以产生核连锁反应的化学元素同位素称为核燃料,也称为可裂变物质。其中最重要的是235U(铀元素的同位素,原子量235),是及239Pu(钚元素的同位素,原子量239),这些核燃料裂变后大部分会形成原子量在95及135左右的元素(核裂变产物)。大部分核燃料的自发裂变非常缓慢,透过α/β衰变链,时间从的数千纪到数地质年代。在核反应堆或是核武中,大部的核裂变是由中子的撞击产生,而核裂变也会产生中子,引发更多的核裂变。

链式反应

链式反应的图。1.铀-235原子吸收中子,裂变成两个较小的新原子,释放三个中子及结合能。 2.其中一个中子被铀-238吸收,不会继续链式反应,另一个中子没有碰撞到其他的原子,最后一个中子碰撞到另一个铀-235的原子核,释放二个中子,继续链式反应。3.这二个中子都碰撞到铀-235的原子核,分别释放1至3个中子,因此继续链式反应。

许多重元素,像是铀、钍、钚,会有由放射性衰变产生的自发裂变,以及由中子引发的核反应。任何吸收中子可以发生核裂变的原子核称为“可裂变物质”(fissionable),但可以吸收缓慢移动的热中子发生核裂变的原子核才能称为易裂变物质(fissile)。一些特别的可裂变物质及其同位素(像233U, 235U及239Pu)可以维持链式反应,而且可以提取足够数量以供使用,这类的物质称为核燃料。

所有可裂变物质及易裂变物质都会有部分原子出现自发裂变,释出一些自由中子。自由中子的半衰期约15分钟,之后会衰变为质子及β粒子,不过在半衰期之前中子就已撞击到其他原子(新衰变的中子速度约为光速的7%,即使慢速的中子速度也是声速的8倍。)。有些中子会撞击原子,引发进一步的核裂变。若附近有够多的核燃料,或者中子维持的够久,发射出来的中子数量比离开核燃料的中子要多,此即为持续核连锁反应。

可以维持持续核连锁反应的组件称为临界组件,若组件都是由核燃料组成,则称为临界质量。临界一词代表控制燃料中自由中子微分方程的尖点,若质量小于临界质量,中子的数量是由放射性衰变决定,若质量大于临界质量,中子的数量则是由连锁反应决定。临界质量的实际质量会受几何形状及周围材料的影响。

不是所有可裂变物质都可以产生核连锁反应,像238U是铀元素中丰度最高的同位素,这是可裂变物质,不过不是易裂变物质。若有能量超过1 MeV的中子撞击238U,会产生核裂变,不过其产生的中子能量大多数都无法再引发其他的裂变,因此这种同位素不会产生核连锁反应。若用慢中子撞击238U,238U会吸收中子(形成239U),并且β衰变,形成239Np,之后会再相同的程序衰变为239Pu。这也是中子增殖反应堆制造239Pu的方法。

核反应堆

德国菲利普斯堡核电站中的冷却塔

临界核反应堆是最常见的核反应堆。在临界核反应堆中,核燃料产生的中子会引发更多的核反应,因此维持可控制程度的能量。有些核反应堆无法自行持续产生核反应,称为次临界核反应堆。需利用核衰变或粒子加速器来引发核裂变。

临界核反应堆兴建的原因有以下的三种,目的可能是因为需要核裂变中产生的能量或是中子,因此在工程上有不同的考量:

1、核能发电希望取得核裂变中产生的能量,可能是发电厂供电用,也可能是核动力潜艇的电源。
2、研究用核反应堆目的是取得中子及核放射性的元素,供科学、医药、工程或其他研究用途。
3、中子增殖反应堆目的是从高丰度的同位素中提炼核燃料,快中子增殖反应堆知名度较高,由自然界丰度高的238U(不是核燃料)中提炼239Pu。以往曾发展过热中子增殖反应堆,用232Th提炼233U(钍燃料循环),仍在继续发展中。

在原理上,所有的核反应堆都可以达到上述的三种目的,但在实务上,这三个的工程目的会互相冲突,大部分的核反应堆只会考虑其中一个目的(以往有些试图达到所有目的的核反应堆,例如Hanford N-reactor,后来已没有使用)。核能发电是将核裂变产物动能转换为热能,再加热工作流体驱动热机,来产生机械能或是电能。工作流体一般是水,配合蒸汽涡轮发动机,不过有些设计也会用氦气为工作流体。研究用核反应堆制造中子,可以用在许多领域,而核裂变产生的热会视为不可用的废热。中子增殖反应堆是特别的研究用核反应堆,要处理的就是燃料本身,是238U和235U的混合物。

原子弹

1945年长崎原子弹爆炸时,在震源出现的蘑菇云,往上高达18千米(11英里)。这次轰炸造成至少六万人的死亡。

原子弹是核武器的一种,是利用核裂变的能量来进行破坏的武器。原子弹是特殊设计的核反应堆,要在原子弹因本身释放能量而爆炸之前,尽快将大量的能量释放出来。早期研究核裂变的一个目的就是为了发展原子弹。美国的曼哈顿计划集合了早期研究核裂变链反应的许多科研成果,进行了三位一体核试,并在1945年8月在日本广岛及长崎投放了小男孩及胖子二颗原子弹。

就算是第一次的原子弹,其爆炸威力也比等重的化学炸药多了数千倍。例如,小男孩原子弹的重量约4吨,其中60公斤是核燃料,约3.4米长,其爆炸威力相当于15000吨的TNT,摧毁广岛市大部分的建筑。现代的核武器(包括氢弹等)比第一代等重的纯核裂变武器破坏力又多了数百倍(参见核武器当量),因此现代的核导弹弹头只有小男孩核燃料重量的1/8(例如W88),TNT当量为475,000 吨,可摧毁比城市大十倍的区域。

原子弹和受控的核反应堆其核裂变链反应的物理基础是相同的,但在工程设计上有很大的不同,原子弹的目的是一次释放其所有的能量,而核反应堆会希望持续的释放能量。若是核反应堆过热,产生堆芯熔毁及蒸汽爆炸,因为核反应堆浓缩铀的浓度比原子弹低很多,因此不可能像原子弹爆炸一样造成大型的破坏。现行技术要从原子弹中提取有用的能量仍非常困难,不过有一个火箭推进系统Orion,计划在太空船后面加上大量的保护及屏蔽,然后在太空船的后面引爆原子弹。

核武器在军事战略上的重要性也造成核裂变的技术有高度的政治敏感度。在工程观点来看,现行的原子弹还算简单。但核燃料难以取得是大部分国家无法制造原子弹的原因,只有少数的现代工业国家才有核燃料,而且有特别的计划来制造核燃料(参照浓缩铀及核燃料循环)。

历史
核裂变是在1938年在威廉皇帝化学学会的建筑物中发现的(现今的柏林自由大学内),当时放射性科学的研究以及描述原子内部的原子核物理学已进行了快五十年。欧内斯特·卢瑟福在1911年提出了原子模型(拉塞福模型),其中有体积很小、高密度且带正电的核子,其中包含许多质子(当时还没发现中子),周围有许多在轨道上运动,带有负电的电子。尼尔斯·玻尔1913年在此为基础,再加入电子的量子特性(波耳模型)。而亨利·贝克勒、玛丽·居礼及皮埃尔·居礼的研究以及卢瑟福进一步的研究指出,虽然原子核的束缚力强,但虽然会有不同形式的核衰变(像α衰变会放出α粒子,也就是氦原子核,其中有二个中子和二个质子),之后嬗变为其他元素。

科学家当时已对核嬗变进行一些研究。卢瑟福在1917年利用α粒子撞击,将氮原子嬗变为氧原子14N + α → 17O + p ,这是第一次观测到的核反应,也就是设法让一个粒子衰变,产生其他粒子。1932年卢瑟福的同事欧内斯特·沃尔顿和约翰·考克饶夫完成了一个完全人工的核反应和核嬗变,利用人工加速的质子撞击锂-7,将其撞击成二个α粒子,这当时称为“裂变原子”,不过这个和后来重元素的核裂变不同。当时也在研究“结合原子”(即核聚变)的可能性。第一个人工的核聚变是马克·欧力峰在1932年开始的,用二个加速的氘原子核(含有一个中子和一个质子)聚变为一个氦原子核。

英国科学家詹姆斯·查德威克在1932年发现中子,之后恩里科·费米和他在罗马的同事在1934年研究用中子撞击原子序为92的铀原子。费米认为他们的实验产生了有93个质子及94个质子的元素,命名为Ausonium及hesperium,不过有些科学家不认同费米下的结论。德国科学家伊达·诺达克在1934年提出质疑,认为产生的不是一个新的,原子序93的元素,而是“原子核被分为数个较大的碎片。只是当时很少人支持诺达克的论点。

在费米发表后,奥托·哈恩、莉泽·迈特纳及Fritz Strassmann等人在柏林进行类似的实验。迈特纳是个奥地利犹太人,因为纳粹1938年占领奥地利而失去了身份,迈特纳逃到瑞典,但继续和哈恩通信。当迈特纳在12月19日收到哈恩的信,有一些化学的证据证实由中子撞击铀产生的原子是钡 ,刚好她的侄子奥托·罗伯特·弗里施也在瑞典。哈恩认为是原子核的爆破,但他不知道有关此结果对应的物理基础为何。钡的原子量比铀少40%,而当时还没有任何已知的衰变会让质量有这么大的变化。弗里施怀疑此结果,但迈特纳相信哈恩在化学上的专业。迈特纳和弗里施正确的诠释了哈恩实验的结果,铀原子核被分为大约两半。弗里施建议此过程可以称为“核裂变”,借用生物学中一个细胞分为二个细胞的细胞裂变。

哈恩和Strassmann在1938年12月22日提出了手稿给《自然科学》杂志,说明他们用中子撞击铀,发现了钡元素。同时他们也将实验结果寄给在瑞典的迈特纳,迈特纳和弗里施正确的将此结果诠释为核裂变的证据。弗里施在1939年1月13日确认此aaa实验。因为证实了由中子撞击铀产生的钡是核裂变的产物, 哈恩获得了1944年的诺贝尔化学奖,原因是“发现重原子核的核裂变”(此奖项在1945年才给哈恩,因为诺贝尔委员会认为1944年化学奖的提名人都不符合诺贝尔的遗愿,此时诺贝尔委员会可以将奖项留到第二年再颁发。)


高中物理知识点总结

发表回复