第九章 静电场及其应用

1 电荷

1. 答案 在天气干燥的时候，脱掉外衣时，由于摩擦，外衣和身体各自带了等量、符号的电荷，接着用手去摸金属门把手时，身体带电，于是产生电击的感觉。

2. 答案 A、B是金属导体，金属内部可移动的电荷是自由电子。由于A带上的是负电荷，所以是电子由B转移到A，A得到的电子数为 \(n = \frac{1.60 \times 10^{-9}}{1.60 \times 10^{-8}} = 6.25 \times 10^6 \)，与B失去的电子数相等。

3. 答案 （1）给任意一条直线切断，都有A带正电，B带负电。

导体原来不带电，当带正电的导体球C靠近时，由于静电感应，导体中的自由电子向B部分转移，使A部分因带了多余的电子而带负电A，部分去因带了电子而带正电。

（2）导体中电荷的移动不会改变电势能。

根据电荷守恒定律，A部分失去电子的数量和B部分得到电子的数目是相同的，因此电场中的任意一点，电荷量总是相等的，但电场中的电场方向不变。电场线从正电荷指向负电荷。电场强度的大小和方向相同的，方向都沿电场线向外。

5. 答案 对右侧小球进行受力分析，如图所示。

由牛顿第三定律，B球带的负电荷q受到的电场力F与电场强度相同，方向相反。B球对A球的电场力F也相同，方向相反。A球对B球的电场力F也相同，方向相反。

由于对称性，每个电荷受到其他三个电荷的静电力的合力的大小相等，方向都指向对称轴向外。

2 库仑定律

1. 答案 A球与B球接触，则A球、B球带电荷量均为 \(\frac{1}{2} q \)。然后B球与C球接触，B球、C球带电荷量均成为 \(\frac{1}{2} q \)。再使A球与B球接触，A球、B球带电荷量变为 \(\frac{3}{2} q \)。

2. 答案 两球之间的静电力不等于 \(\frac{kq_1 q_2}{r^2} \)。

因为库仑定律适用于真空带电荷间静电力的计算，两个半径为r的金属球心相距3r时，由于两球距离太远，带电荷的电荷分别分布，两球不能视为点电荷，因此它们之间作用力的大小已不能直接用库仑定律进行计算，所以库仑定律适用于真空中点电荷间静电力的计算。当两球距离为r时，库仑定律不适用。

3. 答案 设A、B带的电荷量分别为q，C带电荷量为q/2，两球间距为r，则库仑定律适用于真空带电荷间静电力的计算，当两球距离为r时，库仑定律不适用。

3 电场 电场强度

1. 答案 认识A是错误的，电场中某点的电场强度是电场本身的性质，与试探电荷的电荷量q无关，与带电的物体的电荷量q有关；认识B是正确的，它表示电场中的电场强度的决定式；认识C是错误的，电场强度E的大小与试探电荷的电荷量q无关，若q减半，电场电荷的电荷量q则不变，所以电场强度E不变。所以库仑定律适用于真空带电荷间静电力的计算。当两球距离为r时，库仑定律不适用。

2. 答案 电场强度E的大小等于电场受到的电场力F与电荷q的比值，即 \(E = \frac{F}{q} \)。库仑定律适用于真空带电荷间静电力的计算。当两球距离为r时，库仑定律不适用。
5. 答案 (1) B点电场强度最强, C点电场强度最弱
(2) A、B、C三点电场强度的方向如图所示
(3) 负电荷在 A、B、C 三点所受电势力的方向如图所示

6. 答案 小球受重力 mg, 静电力 F, 轻绳的拉力 T 的作用而处于平衡状态, 如图所示。
\[F = mg \tan 30^\circ = \frac{mg}{\sqrt{3}} \]
\[T = \frac{mg}{\sqrt{3}} \]
所以 \[E = \frac{mg}{q} \tan 30^\circ = \frac{2 \times 10^3}{3} \text{N/C} \]

7. 答案 因为电荷量的大小 \(Q_1 > Q_2 \), 放在 \(Q_1 \) 左侧的 x 轴上, \(Q_1 \) 产生的电场强度总大于 \(Q_2 \) 产生的电场强度, 电场方向总是指向 x 轴正方向。在 x=0 和 x=6 cm 之间, 电场强度的方向是沿 x 轴的正方向。在 \(Q_2 \) 右侧的 x 轴上的某点处, 电场强度才有可能为零。
(1) 设该点与 x=0 的距离为 x, 则
\[\frac{Q_1}{x^2} - \frac{Q_2}{(x-6)^2} = 0 \]
解得 \(x = 4 \) cm (不符题意, 舍去), \(x = 12 \) cm;
(2) 在 x 轴上 0 < x < 6 cm 和 x > 12 cm 的地方, 电场强度的方向是沿 x 轴正方向的。
说明: 在距离坐标原点 \(x = \infty \) 的位置, 电场强度也为零。

4. 静电的防止与利用

◆ 练习与应用
1. 答案 用导线将生产过程中产生的静电导走, 或使车间保持潮湿, 及时将静电导走。
2. 答案 起静电作用时, 到静电附近电场强度最大。
空气被电离后形成的自由电子会附着在尘埃上, 这些自由电子附着的尘埃最终会接触到极板的金属片上。
3. 答案 因为超高电场的偶极子循环, 带电作业的工人直接进入这样的强电场会有生命危险。如果工人穿上包
含金属丝的组织制作的工作服, 这套工作服就像一个金属网罩, 可以起到静电屏蔽的作用, 使超高峰电场的偶极子被工作服屏蔽起来, 工人就可以安全工作了。
4. 答案 点火器的防电极做成尖形是利用尖端放电现象, 使在电压不高的情况下也容易点火。
验电器的金属杆上端固定一个金属球是为了防止出现尖端放电现象, 使验电器在电荷较小时也不会放电 (避雷)。
5. 答案 使用金属网状编织层把话筒覆盖起来, 扩大周围环境的干扰信号。

◆ 复习与提高
A 组
1. 答案 当隔电器带电时, 两片金属箔带上相同电荷, 由于同
种电荷相斥, 两片金属箔会张开一个角度; 当两片金属箔
张开一定的角度, 金属箔片受力平衡时, 张开的角度就不变了。
2. 答案 放电体 C 的两侧有两个相互接触的金属导体 A 和
B, 由于静电感应, A、B 中的自由电子向左移动, 使得 A 端积累
负电荷, B 端积累正电荷, 把 A、B 分开, 因 A、B 之间已经绝缘, 此时即使再移动 C, A、B 上所带电荷量不会改变。A 带电, B 带反电; 如果再移动 C, A、B 上的感应电荷会马上中和, 不再带电, 再把 A、B 分开, A、B 将都不带电。
3. 答案 \(\alpha = \beta \)
以球 A 为研究对象, 对 A 受力分析如图所示。
由共点力平衡得:
\[F = \frac{F_1}{\sin \alpha} = \frac{F_1}{m_1} \]
由图得 \(\tan \alpha = \frac{F_1}{m_1g} \), 同理, 对 B 球分析

4. 答案 第三个小球应放在两个带正电小球之间距离 \(Q \) 小球 0.1 m 处, 带电荷, 电量为 \(Q = \frac{9 \times 10^{-16}}{16} \)

要使 \(q \) 平衡, 应使 \(9Q \) 对 \(q \) 的库仑力大小相等, 方向相反, 因此 \(q \) 必须和 \(9Q \) 在同一条直线上。因为 \(9Q \) 带同种电荷, 所以只要有可能在它们同侧, 一定在它们之间。设 \(q \) 与 \(Q \) 的距离是 \(x \), 如图所示。

根据库仑定律和平衡条件列式: \[\frac{kQq}{x^2} - \frac{9Qq}{(0.4-x)^2} = 0 \]
要使 \(q \) 平衡, 应使 \(9Q \) 对 \(q \) 的库仑力大小相等, 方向相反, 所以 \(q \) 一定带负电。

4. 答案 设绝缘线与竖直方向的夹角为 \(\theta \),
则 \[\tan \theta = \frac{2}{\sqrt{200^2-2^2}} = \frac{1}{9.999} \]
所以 \[F = \frac{Q}{\sin \theta} \]

6. 答案 静电平衡时, 导体球中心 O 处的电场强度为 0, 所以导
体球上感应电荷在 O 处产生的电场强度与点电荷 q 在球中心 O 处产生的电场强度大小相等, 方向相反。\[E_m = \frac{q}{(R + \frac{1}{2})^2} \]
方向向左。

B 组
1. 答案 变化器没有违背能量守恒定律。因为把 A、B 分开或把 A、B 在 C 附近相接需要能量, 小电动机转动的能量就来自于此。
2. 答案 当每个金属球等分得 \(Q \) 时, 它们之间的静电力最大。
它们之间的静电力为 \(F = k \frac{Q_q}{r^2} \).
当 \(q = \frac{Q}{2} \) 时，\(F \) 最大。

3. 答案 负电荷 \(2 \sqrt{2}q \)
设正方形的边长为 \(r, A, C \) 两点的正电荷在 \(D \) 处产生的合成
电场强度为 \(E = \sqrt{2} \frac{kQ}{r^3} \)，方向由 \(B \) 指向 \(D \); 在 \(B \) 点的电荷在
\(D \) 处产生的电场强度与 \(A, C \) 两点的正电荷在 \(D \) 处产生的电场
强度大小相等，方向相反，所以 \(B \) 点的电荷为负电荷。由
\(k \cdot \frac{q}{2r} \cdot \frac{q}{2r} = \sqrt{2} \cdot \frac{kQ}{r^3} \)，得 \(q = \frac{2\sqrt{2}Q}{3} \)。

4. 答案 \(k \cdot \frac{q}{9d^2} \)，方向向左
带电薄板不能看成是点电荷，它在 \(B \) 点产生的电场要利
用对称思想进行分析。
由于 A 点的电场强度为 0，说明点电荷 \(q \) 在 A 点产生的电场
强度与带电薄板在 A 点产生的电场强度大小相等，方向相
反，即 \(E_{da} = k \cdot \frac{q}{9d^2} \)，方向向左。
根据对称性可知，带电薄板在 B 点产生的电场强度与带
电薄板在 A 点产生的电场强度大小相等，方向相反，所以
\(E_{db} = k \cdot \frac{q}{9d^2} \)，方向向右。

5. 答案
(1) \(E_1 = 2k \frac{Q_1}{r^2} \cdot \frac{x}{x^2} = \frac{2kQ_1}{r^2} \)
(2) \(E_2 = 2k \frac{Q_2}{r^2} \cdot \frac{1}{x^2} = \frac{kQ_2}{r^2} \)
(3) \(E_1 > E_2 \)

6. 答案
(1) \(E_a = \frac{4}{0.1} \) N/C=40 N/C, \(E_b = \frac{1}{0.4} \) N/C=2.5 N/C, 方向
都是沿 x 沿正方向。
(2) 由于 \(E_a \geq E_b \)，场源点电荷 \(Q \) 在 A 点左侧，设其坐标
为 \(x \)，则有 \(E_x = k \frac{Q}{0.3-x^2} = 40 \) N/C
\(E_a = k \frac{Q}{0.6-x^2} = 2.5 \) N/C
联立解得 \(x = 0.2 \) m。

第十章 静电场及其应用

1 电势能和电势

1. 答案 \(W_{bc} = W_{bc} + W_{dc} = EQ \cdot l_{ab} + EQ \cdot l_{bc} \cos 60^\circ = 2.64 \times 10^{-7} \) J
静电力所做的功与电荷的起始位置和终止位置有关，与
电荷经过的路径无关。所以
\(W_{bc} = W_{bc} = 2.64 \times 10^{-7} \) J

2. 答案 \(\varphi = \frac{E}{q} = \frac{6 \times 10^4}{9 \times 4 \times 10^3} = 15 \) V
\(E = \varphi = 15 \times (2 \times 10^{-3}) = 3 \times 10^{-3} \) J

3. 答案 (1) A 点的电势高 (2) D 点的电势高 (3) \(q \) 在 \(E \) 点的
电势能为负，所以 \(K \) 点的电势小于 0，\(q \) 在 \(F \) 点的电势能是
负值，所以 \(F \) 点的电势大于 0，因此 \(F \) 点的电势高。

2 电势差

1. 答案 \(W_{dc} = qU_{dc} = -2 \times 10^{-3} \times 20 J = -4 \times 10^{-3} J \)，静电力做负功
4 \times 10^{-3} J，电势能增加 4 \times 10^{-3} J。

2. 答案 \(E = 1.6 \times 10^{-3} C < 1 V = 1.6 \times 10^{-3} J \)

3. 答案 (1) B 点的电势比 A 点的电势高，负电荷在 A 点的电势能
较大。

(2) 负电荷由 B 点移到 A 点时，静电力做负功。

(3) \(U_{ba} \) 是负的，\(U_{ba} \) 是正的。
4. 答案 不能。若两个电势不同的等势面相交，相交处的电势就相等，这两个等势面的值就不能相同，否则电场中两个电势的等势面不能相交。

5. 答案 电场线大致分布如图所示。

6. 答案 （1）当A点与B点的电势相等时，电场力做功最小。电场力做功为：

$$W_{AB} = q(E_1 - E_2) = q(\varphi_A - \varphi_B) = q(\varphi - \varphi_0)$$

（2）当B点电势为零时，电场力做功最大。电场力做功为：

$$W_{AB} = qE_2 = q(\varphi - \varphi_0)$$

两步解答，得：

$$W_{AB} = q(E_1 - E_2) = q(\varphi - \varphi_0)$$

3. 电场力与电场强度的关系

1. 答案 \(E = \frac{U}{d} = \frac{4 \times 10^4}{1.5 \times 10^4} \text{V/m} = 3.1 \times 10^4 \text{V/m} \)

2. 答案 由于距离为10 cm，电场强度为：

$$E = \frac{U}{d} = \frac{1000}{0.01} = 1.0 \times 10^6 \text{V/m}$$

4. 答案 由于电场强度为1.0 \times 10^6 \text{V/m}，电场力的大小为：

$$F = qE = 1.6 \times 10^{-19} \times 1.0 \times 10^6 = 1.6 \times 10^{-13} \text{N}$$

5. 带电粒子在电场中的运动

1. 答案 解法一：\(E_1 = \frac{U_1}{d_1} = \frac{90}{6.2 \times 10^3} \text{V/m} \)

解得：\(E_2 = \frac{U_2}{d_2} = \frac{21}{6.2 \times 10^3} \text{V/m} \)

2. 答案 解法二：\(E = \frac{U}{d} = \frac{0.5}{6.2 \times 10^3} \text{V/m} \)

3. 答案 解法三：\(E = \frac{U}{d} \cdot q = \frac{90}{6.2 \times 10^3} \cdot 0.5 \text{V/m} \)

4. 答案 电容器的电容是：

$$C = \frac{Q}{U} = \frac{4.5 \times 10^{-3}}{2} = 1.5 \times 10^{-4} \text{F}$$

4. 电容器的电容

1. 答案 第一行：减小 2 减小 电能转化为内能 放电

2. 答案 增大 电能从电池转移到电容器 充电

3. 答案 电容器的电容是 C = \(\frac{Q}{U} = \frac{4.5 \times 10^{-3}}{2} = 1.5 \times 10^{-4} \text{F} \)

将电容器的电压降为2 V，电容器的电容不变，还是 1.5×
6. 答案 由动量定理有 \[E_y \cdot \Delta t = \frac{1}{2} m v^2 \]
所以 \[E_y = \frac{m (1.67 \times 10^{-30} \times (1.0 \times 10^{-10})^2)}{2 \times 1.6 \times 10^{-15} \times 4.0} \approx 1.3 \times 10^3 \text{ N/C} \]

◆ 复习与提高
A 组
1. 答案 (1) 把电子从 b 点等势面移动到 e 等势面，
静电场做功是 \[W = E_y \cdot \Delta s = (-15) \times (-1.6 \times 10^{-17}) \times 2.4 \times 10^{-10} \text{ J} \]
(2) 电场中的 A、B 两点，电势相等，由 \[E_y = \phi \]
可知两电势能相等的试探电荷电势能相等；
由图可知 A 点附近等势等势面较密，所以 A 点的电场强度大于 B 点的电场强度，由 \[F = E_y q \]
可知，A 点的试探电荷受到的静电力大。
2. 答案 不存在。因为等势线一定与电场线垂直，如果电场线相互平行，那么等势线也一定平行，就会出现不与电势相等矛盾的情况。
3. 答案 (1) 电荷从 A 点到 B 点速度变大，电势做正功，电势能减小，所以 \[E_y > E_y q \]
由 \[\phi = \frac{E_y}{q} \]
可知电荷的电势能越大，其所在位置的电势越低，所以 \[\phi > \phi q \]
(2) 由图可知，正电荷从 A 点到 B 点，电势变大，即加速度变小，电势能变小，由 \[E_y = \frac{F}{q} \]
可知场强增加，所以 \[E_y = E_y q \]
4. 答案 从 A 点到 C 点，电荷能减少 \[1.92 \times 10^{-17} \text{ J} \]
电荷做功为 \[W_{AC} = 1.92 \times 10^{-17} \text{ J} \]
电荷在 C 点的电势为 \[U_{AC} = \frac{W_{AC}}{q} = \frac{1.92 \times 10^{-17}}{1.6 \times 10^{-19}} \approx 12 \text{ V} \]
5. 答案 电容器两极板间的电压为 \[U = \frac{Q}{C} = \frac{6 \times 10^{-10}}{1.5 \times 10^{-15}} \approx 400 \text{ V} \]
如果两板间的距离为 1 mm，电容器两极板间的电场强度是 \[E = \frac{U}{d} = \frac{400}{1 \times 10^{-3}} \approx 4 \times 10^5 \text{ V/m} \]

B 组
1. 答案 两等量异种点电荷之间连线上点的电势是正点电荷之间连线上电场强度最强的点，是连线上电场强度最大的点，该点的电场强度为 B。该点的电场强度为 B。可试卷电荷从 A 点移动到 B 点，再沿连线上 B 点移动 C 点，电势电势能不变。
2. 答案 两金属板间的电场强度为 \[E = \frac{U}{d} \]
3. 答案 (1) \[U = \frac{W_{AB}}{q} = \frac{-2.4 \times 10^{-1} \text{ J}}{-6 \times 10^{-3}} \approx 4 \text{ V} \]
(2) \[\psi = U_{AB} + U_{BC} = U_{AB} = 2 \text{ V} \]
(3) 取 AB 中点 C，\[\phi_c = \frac{\phi_A + \phi_B}{2} = 2 \text{ V} \]
则 DC 是等势线，过点 A，B 作 DC 的垂线就是电场线，电场线方向指向电势降低的方向，如图所示；

第十一章 电路及其应用

1. 电源和电流
1. 答案 \[q = 50 \times 10^{-6} \times 3.2 = 1.6 \times 10^{-4} \text{ C} \]
通过该截面的电流为 \[I = \frac{q}{t} = \frac{1.6 \times 10^{-4}}{6 \times 10^{-5}} \approx 1 \times 10^3 \text{ A} \]
2. 答案 \[I = \frac{q}{t} = 0.3 \text{ A} \]
3. 答案 该手机的待机电流 \[I = \frac{4000 \times 10^{-3}}{22 \times 24} = 7.58 \text{ mA} \]
用该手机播放视频的电流 \[I' = \frac{4000 \times 10^{-3}}{17} \approx 235.29 \text{ mA} \]

2. 导体的电阻
1. 答案 \[R_x = R_y = R_y \]
2. 答案 \[R = \frac{L}{I} = \frac{0.25}{0.1} \Omega = 12 \text{ Ω} \]
导线是用铜丝制作的，若铜丝长为 10 cm，横截面积为 1 mm²，铜导线的电阻为：
\[R' = \rho = \frac{1.7 \times 10^{-8} \times 10^{-10}}{1 \times 10^{-4}} \Omega = 1.7 \times 10^{-7} \Omega \]
即 R’比 R 小得多，故可不计导线的电阻。
3. 答案 \[R = \frac{1}{S} = \frac{1.7 \times 10^{-8} \times 10^{-5}}{4 \times 10^{-4}} \Omega = 0.2125 \Omega \]
作用在该导线上的电流 \[I = 0.7 \text{ A} \]
该导线电阻为 0.2125 Ω，电流正常工作的电流 \[I = 7 \text{ A} \]
故导线上损失的电压为 \[U = IR = 7 \times 0.2125 \text{ V} = 1.49 \text{ V} \]
4. 答案 两电阻间输电线的电阻是 $R = \rho \frac{L}{S} = 1.7 \times 10^{-3} \times \frac{0.04}{120 \times 10^{-2}} \Omega = 5.67 \times 10^{-6} \Omega$。

两电阻之间的电压是 $U = IR = 500 \times 5.67 \times 10^{-6} \approx 2.84 \times 10^{-2} \text{V}$。

5. 答案 盐水柱的体积不变，故横截面积变为原来的 $\frac{3}{4}$，因此

$$\frac{R'}{R} = \frac{1}{S'} = \frac{1}{S} \cdot \frac{3}{4} = \frac{4}{3} \cdot \frac{3}{4} = \frac{16}{9},$$

所以 $R' = \frac{16}{9} R$。

6. 答案 由 $\frac{R}{S} = \frac{\rho}{\frac{L}{S}}$，得 $R = \frac{\rho L}{S}$。

电流沿 CD 方向时，样品的电阻 $R' = \frac{L}{S} = \frac{b}{a} = \frac{2h}{a}$。

7. 答案 (1) 肥胖的人脂肪含量多，而脂肪不容易导电，因此肥胖的人电阻大。

(2) 激烈运动之后或沐浴之后，人体的外表会附着容易导电的钠离子、钾离子等离子，使人体的电阻变小，这时使用脂肪测量仪测出的结果自然就不准确。

3. 实验：导体电阻率的测量

1. 答案 1.37 cm \times 3.276 mm

2. 答案 (1) 不合格的纯净水含有较多的离子，电阻率偏小，电导率偏大。

(2) 如图所示；

3. 答案 由图示可知，电流表示数 $I = 1.20 \text{A}$，电压表示数 $U = 0.50 \text{V}$。

金属丝的电阻 $R = \frac{U}{I} = \frac{1.20}{1} = 2.4 \Omega$。

金属丝的导线尺寸 $S = \pi \left(\frac{d}{2} \right)^2 = 3.14 \times \left(\frac{0.635 \times 10^{-3}}{2} \right)^2 \text{m}^2$。

3.17 $\times 10^{-7} \text{m}^2$。

由 $R = \rho \frac{L}{S}$，得金属丝的电阻率 $\rho = \frac{RS}{L} = 2.4 \times 3.17 \times 10^{-7} \Omega \cdot \text{m}$。

$\rho = 1.27 \times 10^{-6} \Omega \cdot \text{m}$。

4. 串联电路和并联电路

1. 答案 $\frac{R}{R + R_s} U = U_0 \leq U_0$。

滑动变阻器阻值为 0 时，R 两端电压最大，等于 U_0。

滑动变阻器阻值最大时，R 两端电压最小，等于 $\frac{R}{R + R_s} U_0$。

所以 R 两端电压的变化范围是 $\frac{R}{R + R_s} U_0 \leq U_0 \leq U_0$。

2. 答案 (1) 因为 R_1 与 R_2 串联，所以通过它们的电流为 I，可知

$$U_i = IR_1 = U_0 \left(\frac{R_1}{R_1 + R_2} \right).$$

所以电压之比 $\frac{U_1}{U_0} = \frac{R_1}{R_1 + R_2}$。

(2) 设 C_1 与 R_2 并联为 R_1，滑动变阻器滑片以下部分电阻为 R_2，电路结构为并联 R_1 与 R_2，并联后再与 $(R_2 - R_1)$ 串联，

$$U_{in} = \frac{R_1}{R_1 + (R_2 - R_1)} U_0 = \frac{R_1}{R_2} U_0,$$

$$R_1 = \frac{R_1}{R_2} U_0 R_2 + RR_2 - R_1.$$

故当 $R_2 = 0$ 时，$U_{in} = 0$；当 $R_2 = R_1$ 时，$U_{in} = U_0$。故 U_{in} 可取从 0 至 U_0 的任意值。

3. 答案 在甲电路中，电阻 R 两端的电压测量值是准确的，但电流表的读数是通过电阻 R 和电压表的电流之和，即电流表的读数大于真实值。电压表的测量值为 V 与 R_1 的并联值，故 $R_{in} = \frac{R_{in} R_1}{R_{in} + R_1} = 87.4 \times 10^2 \Omega \approx 0.4 \Omega$。在乙电路中，电流的测量值是准确的，但电压表的读数是电压表和 R 两端的总电压，电阻的测量值为 R 与 R_1 的串联值，$R_{in} = R + R_1 = 87.4 \Omega$，故 $R_{in} = 87.5 \Omega$。

结论：由于电压表和电流表内阻的影响，使两种接法中均存在系统误差，甲中电压表的测量值小于真实值，乙中电流表的测量值大于真实值。当使用电路中电压表测量电路电阻的阻值时，乙图接法的误差较小。

4. 答案 由 $U = I (R + R_s)$，得 $R = \frac{U}{I} - R_s = 9.5 \times 10^{-3} \Omega$，得 $R_{in} = 9.5 \times 10^{-3} \Omega$，当使用 A, C 两个并联时，$I_{in} = \frac{I_1 + I_2 + I_3}{R_{in} + R_s} = 100 \text{mA}$，故 $R_{in} = 9.0 \times 10^{-3} \Omega$。

5. 答案 当使用 A, B 两个并联时，R_2 与电压表串联后再与 R_1 并联，可得 $I = \frac{U}{R_1 + R_2}$，当使用 A, C 两个并联时，R_1 与 R_2 串联后再与电流表并联，可得 $I = \frac{U}{R_1 + R_2} = \frac{U}{R_1 + R_2}$。

4. 实验：练习使用多用电表

1. 答案

<table>
<thead>
<tr>
<th>序号</th>
<th>所测物理量</th>
<th>量程或倍率</th>
<th>指针</th>
<th>读数</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>电压</td>
<td>50 V</td>
<td>a</td>
<td>13.5 V</td>
</tr>
<tr>
<td>2</td>
<td>直流电压</td>
<td>10 mA</td>
<td>b</td>
<td>8.5 mA</td>
</tr>
<tr>
<td>3</td>
<td>电阻</td>
<td>×100</td>
<td>a</td>
<td>5.5x10^{-4} Ω</td>
</tr>
<tr>
<td>4</td>
<td>电阻</td>
<td>×10</td>
<td>b</td>
<td>4 Ω</td>
</tr>
</tbody>
</table>

2. 答案 DBE

3. 答案 (1) 红表笔 (2) 红表笔

4. 答案 甲的接法符合规范，因为交流电压最高档内部电阻很大，万一出现短路（如不慎将两表笔与电源相连）不会损坏多用电表。
5. 答案 (1) 红表笔接 A，黑表笔接 B，如果电压表有示数，说明电路有电，电压表表明电压，说明电池没电。
（2）红表笔接 C，黑表笔接 D，如果电压表有示数，说明开关接触不良。
（3）红表笔接 F，黑表笔接 F，如果电压表有示数，说明灯泡和灯泡座接触不良。

◆复习与提高

A 组
1. 答案 总电阻接近 10 Ω，所以干路的电流大约是 1 A。
2. 答案 设电源两端电压为 U，滑动变阻器滑动片向右滑动，变阻器阻值减小，干路电阻变小，所以干路电流 I = \frac{U}{R_0} 增大，所以并联部分的电压 U_{ab} = U - IR_0 变小，灯泡亮度变暗。
3. 答案 实验用铜导线的电阻 R = \frac{L}{\rho} = 1.7 \times 10^{-4} \times \frac{0.6}{0.5} \times 10^{-4} \Omega = 2.04 \times 10^{-7} Ω。
输电线长导线的电阻 R = \frac{L}{\rho} = 2.9 \times 10^{-4} \times \frac{10^{-3}}{1 \times 10^{-3}} \Omega = 2.9 Ω。
4. 答案 在串联电路中，R = R_1 + R_2 + \cdots + R_n，显然其中一个重要条件是：R 增大。
在这个等式中，当 R = R_1 + R_2 + \cdots + R_n，可以设变量 y = \frac{1}{x}，这是一个反比例函数，单调递增，设并联电路中某支路的电阻为 R，R 增大时，\frac{1}{R} 减小，所以 \frac{1}{R} 减小，所以 R 增大。
5. 答案 （1）40 Ω （2）80 V
解析（1）当 C，D 两端时，A，B 间的电路的电阻是：电阻 R_{AB}，R_{AB} 并联后与 R_{AB} 串联，A，B 间的等效电阻为 R_{AB} = \frac{R_1 R_2}{R_1 + R_2} = 40 Ω。
（2）当 A，B 两端时，测试器 C，D 两端的电压等于电阻 R_{AB} 两端的电压，有 U_{AB} = R_{AB} I = 80 V。
6. 答案 （1）表盘左侧 0 刻度 （2）×1 （3）表盘右侧 0 刻度（4）19.0
7. 答案 （1）红表笔接 B，黑表笔有示数，说明 AB 导线是短路的；如果没有示数，说明 AB 导线是完好的。如果 AB 导线是完好的，红表笔接 D，黑表笔有示数，说明 CD 导线是断路的；如果没有示数，说明 CD 导线是完好的。若 CD 导线完好，则 CF 导线是断开的，也可以红表笔接 F，黑表笔有示数，说明 CF 导线是断开的。
（2）由于电源电压是 6 V，用直流 2.5 V 档会损坏多用电表；如果用直流 0.5 A 档，用黑表笔接 A 时会损坏多用电表；如果用“×1”档，这时多用电表内接电表，与多用电表外的电源互相影响，不仅不能准确读出分度线，还会损坏多用电表。

B 组
1. 答案 I = \frac{LR}{R_0}，方向沿轴线向左。
2. 答案 由于 L = \frac{R_0}{R_0 - R_n} 所以能通过甲电路测得的电阻值更接近真实值；由于本题甲电路三伏表的分压，使得测量值偏大，从而使电阻测量值偏大。
3. 答案 （1）如图所示；
（2）闭合开关 S 前，应把可变电阻器的滑片置于右端 B 处。
（3）当小灯泡正常工作时，其两端的电压为 U = 2.5 V，电流表的示数为 I = 0.43 A，所以小灯泡正常工作时的电阻为 R = \frac{U}{I} = \frac{2.5}{0.43} Ω = 5.8 Ω。
4. 答案 如图所示；
5. 答案 （1）不管采用哪种电路，滑移电流 I = 50 μA，内阻 R = 800 Ω。
（2）电路图更合理，因为电路图可以防止测量时电流全部流过表头，更安全可靠。
6. 答案 （1）应该用红表笔始终接触 A 点；
（2）用红表笔接触 A 点，用黑表笔依次接触电路中的 B，C，D，E，F，点，如果某次多用电表显示为 0，则是黑表笔所接触和右侧的元件有断路。

第十二章 电 能 能量守恒定律

1. 电路中的能量转化

◆练习与应用

1. 答案 串联电路各处电流相等，由 P = UI = IR，I = I_{1} + I_{2} 则 P_{1} = P_{2} = \cdots = P_{n} = R_{1} = \cdots = \frac{P_{2}}{R_{2}}，此式说明，串联电路中各电阻消耗的电功率与其阻值成正比；
并联电路各电容两端的电压相同，由 \(P = U^2 / R \) 可知，功率与电压成正比，功率越大，电功率越大。当并联时，各电容上的电压相同。电源的功率与电压成正比，而与电容的电压成正比。因此，电容越小，电功率越大。当并联时，各电容上的电压相同。电源的功率与电压成正比，而与电容的电压成正比。因此，电容越小，电功率越大。

2. 答案 (1) 在纯电阻电路中，由电功率 \(P = U^2 / R \)，及电压越大，电功率越大。当并联时，各电容上的电压相同。电源的功率与电压成正比，而与电容的电压成正比。因此，电容越小，电功率越大。

3. 答案 由 \(P = U^2 / R \) 可知，电热器的功率为 \(P_a = \frac{U^2}{R_a} \)。则有：

\[R_a = \frac{U^2}{P_a} \]

4. 答案 当只有电热器 A 时，电热器 A 上的电压为 \(U_a = U_1 = 5.5 \times 30 = 165 \text{ V} \)。电热器 A 的功率为 \(P_a = U_a I_a = 5.5^2 \times 30 = 907.5 \text{ W} \)。

\[I_a = \frac{U_1}{R_a} = \frac{5.5}{30} = 0.183 \text{ A} \]

5. 答案 电热器的总电阻为 \(R = R_1 + R_2 \)。当电热器 A 与电热器 B 并联时，电热器 A 的功率为 \(P_a = U_a I_a = 5.5^2 \times 30 = 907.5 \text{ W} \)。电热器 B 的功率为 \(P_b = U_b I_b = 3^2 \times 20 = 180 \text{ W} \)。

2. 闭合电路的欧姆定律

1. 答案 单位是瓦（W），\(E \) 表示电源非静电力做功的功率。
2. 答案 日常生活中的电池都可使用两节干电池时，通常为并联，每节干电池的电动势为 1.5 V，两节干电池的电动势为 3 V。当每节干电池的内阻为 \(r \) 时，两节干电池的总内阻为 2r。由欧姆定律，有：

\[U_{ab} = E - U_{bc} = 3.0 \text{ V} - 2.2 \text{ V} = 0.8 \text{ V} \]

因此，电热器 A 上的电压为 \(U_a = U_{ab} + U_{bc} = 3.0 \text{ V} \)。电热器 A 的功率为 \(P_a = U_a I_a = 5.5^2 \times 30 = 907.5 \text{ W} \)。电热器 B 的功率为 \(P_b = U_b I_b = 3^2 \times 20 = 180 \text{ W} \)。
3. 答案 设电表表内电阻为r_1, 则此时合电路的总端电压$U = I(R + r_1)$, 代入数据，计算电阻电压数据如下：

<table>
<thead>
<tr>
<th>R/Ω</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>U/V</td>
<td>0.837</td>
<td>0.826</td>
<td>0.817</td>
<td>0.799</td>
<td>0.775</td>
<td>0.738</td>
</tr>
</tbody>
</table>

以U为纵坐标，I为横坐标，建立平面坐标系，取合适的标度，用表格中U与I的数点据，作出一条直线，得$U-I$图线如图所示。

4. 能源与可持续发展

练习与应用

1. 答案 由于能量的转移与传递，说明能量的转化和转移过程具有方向性。能源的利用受到方向性的制约，能源的利用是有条件的，也是有限度的，因此要节约能源。

2. 答案 家用电器节能是把热力能转化为电能；洗衣机是把电能转化为机械能等。

3. 答案 （1）根据题意，切断电机电源的列车在运动中机械能守恒，要使列车冲上站台，列车的动能E_k最少要等于列车在站台上的电能$W = \frac{mg}{2}$。

列车在站台上的速度$v_1 = \frac{1}{2}mv_1^2$

$E_k = \frac{1}{2}mv_1^2$

可见$E_k > E_{k1}$，所以列车能冲上站台。

设列车冲上站台后的速度为v_1，根据机械能守恒定律，有

$E_k = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2$

$E_k = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2 - mgh$

可得：$v_1 = 5.08 m/s$

（2）工程师这样设计可以节约能源。

4. 答案 经过时间t，通过截面的气体的质量为$m = \rho Slt$。

风能：$E = \frac{1}{2} \rho Slt$。

转化来的电能：$E_e = 20\% E_k = \frac{1}{10} \rho Slt$。
输出电路上的电压 $U_B = I - 2r = 2.66 \times 2 \times 10 \text{ V} = 5.32 \text{ V}$
输出电路上的功率 $P_B = I^2 \cdot 2r = 2.66^2 \times 2 \times 10 \text{ W} = 14.15 \text{ W}$

20 盏灯都打开时，并联部分的电阻 $R_{20}^{807} = 20 \text{ \Omega}$
干路电流 $I = \frac{U}{2r + R_{20}^{807}} = \frac{220}{2 \times 10 + 807} = 0.519 \text{ A}$
整个电路消耗的功率 $P = I^2 = 0.519^2 \times 1141.8 \text{ W} = 30.84 \text{ W}$
输出电路上的电压 $U_B = I^2 \cdot 2r = 0.519^2 \times 2 \times 10 \text{ V} = 53.87 \text{ W}$

7. 答案
(1) a 的斜率 $k_a = \frac{2}{0.1} = 20 \text{ \Omega}$；$b$ 的斜率 $k_b = \frac{1}{0.3} = 3.33 \text{ \Omega}$
(2) a 的斜率和 b 的斜率表示可调电阻 R_a 接入电路的不同电阻值；ab 的斜率的绝对值表示 R_a 的电阻值。

B 组
1. 答案
(1) 增大；(2) 减小；(3) 增大
2. 答案
电机不启动时，车灯的功率 $P_1 = (E - b) \cdot I = (12.5 - 0.05) \times 10 \text{ W} = 120 \text{ W}$
车灯的电阻 $R = \frac{E - b}{I} = \frac{12.5 - 10}{0.05} = 40 \text{ \Omega}$
车灯的电压 $U = E - IR = (12.5 - 0.05) \times 0.05 \text{ V} = 9.5 \text{ V}$
车灯的功率 $P_2 = \frac{U^2}{R} = \frac{9.5^2}{1.2} \text{ W} = 75.2 \text{ W}$
车灯的功率 $P_3 = P_1 + P_2 = 44.8 \text{ W}$
3. 答案
5 000 个电阻串联成一串，
电势差 $U_n = 5 000 \times 0.05 \text{ V} = 750 \text{ V}$
内阻 $r = 5 000 \times 0.25 \text{ \Omega} = 1250 \text{ \Omega}$
总内阻 $R = 1250 \text{ \Omega}$
总功率 $P = \frac{U^2}{R} = \frac{750^2}{1250} \text{ W} = 375 \text{ W}$
4. 答案
(1) 当滑动变阻器的阻值为 0 时，电阻 R_c 消耗的功率最大。
(2) 当滑动变阻器的阻值为 2.5 Ω 时，滑动变阻器 R_c 消耗的功率最大。
(3) 当滑动变阻器的阻值为 5 Ω 时，电源的输出功率最大。
5. 答案
(1) 0.9 V
(2) 0.8 A

(3) 根据给出的 $U - I$ 图像，得出电池的电动势 $E = 0.86 \text{ V}$，内阻 $r = 8.6 \times 10^{-3} \text{ \Omega}$。

第十三章 电磁感应与电磁波初步

1 磁场 磁感线

练习与应用

1. 答案 把线圈绕在磁铁的上端，电流的磁场通过铁芯，使得电流的磁场增强，从而产生更大的电流。
2. 答案 铁芯中的磁通量分布不均匀，电流的磁场通过铁芯，使得电流的磁场增强，从而产生更大的电流。
3. 答案 磁通量的计算公式为 $\Phi = B \cdot A$，其中 B 为磁场强度，A 为线圈的面积。
4. 答案
(1) 磁通量的计算公式为 $\Phi = B \cdot A$，其中 B 为磁场强度，A 为线圈的面积。
(2) 磁通量的计算公式为 $\Phi = B \cdot A$，其中 B 为磁场强度，A 为线圈的面积。

2 磁感应强度 磁通量

练习与应用

1. 答案 磁感应强度的计算公式为 $B = \frac{\Phi}{A}$，其中 Φ 为磁通量，A 为线圈的面积。
2. 答案 磁感应强度的计算公式为 $B = \frac{\Phi}{A}$，其中 Φ 为磁通量，A 为线圈的面积。
3. 答案
(1) 磁通量的计算公式为 $\Phi = B \cdot A$，其中 B 为磁场强度，A 为线圈的面积。
(2) 磁通量的计算公式为 $\Phi = B \cdot A$，其中 B 为磁场强度，A 为线圈的面积。

3 电磁感应现象及应用

练习与应用

1. 答案
(1) 产生感应电流；
(2) 产生感应电流；
(3) 产生感应电流。

2. 答案 有，由于拉紧线圈收缩时，线圈形成的面积减小，穿过线圈的磁通量减少，所以产生感应电流。

3. 答案 线圈在进入磁场的过程中，由于穿过线圈的磁通量变大，所以线圈中产生感应电流；
 - 线圈在离开磁场的过程中，由于穿过线圈的磁通量减小，所以线圈中产生感应电流；
 - 整个线圈都在磁场中运动时，由于穿过线圈的磁通量不变，所以线圈中不产生感应电流。

4. 答案 当线圈远离导线移动时，由于线圈所在位置的磁场不断减小，所以穿过线圈的磁通量减小，线圈中产生感应电流。
 - 当导线中的电流逐渐增大或减小时，线圈所在位置的磁场随着变化，穿过线圈的磁通量也逐渐增大或减小，所以线圈中产生感应电流。

5. 答案 如果线圈沿着匀强磁场的方向移动，由于穿过线圈的磁通量不发生变化，所以线圈中没有感应电流；
 - 如果线圈沿着不均匀磁场的方向移动，由于穿过线圈的磁通量发生变化，所以线圈中有感应电流。

6. 答案 乙、丙、丁三种情况下，可以观察到线圈 B 中有感应电流。
 - 因为甲所示的电流是恒定电流，所以由这个电流产生的磁场是不会变化的，穿过线圈 B 的磁通量不变，不产生感应电流。乙、丙、丁三种情况所表示的电流是变化的电流，那么由这个电流产生的磁场也是变化的，穿过线圈 B 的磁通量发生变化，产生感应电流。

4 电磁波的发现及应用

◆ 练习与应用

1. 答案 $\lambda = \frac{c}{f} = \frac{3 \times 10^8}{2 \times 450 \times 10^9} = 0.222 \text{ m}$

2. 答案 它的传播不需要介质，它传播的速度就是光速，$c = 3 \times 10^8 \text{ m/s}$。

3. 答案 $f = \frac{c}{\lambda} = \frac{6.74 \times 10^3}{3 \times 10^8} = 2.24 \times 10^5 \text{ Hz}$

4. 答案 $\lambda = \frac{c}{f} = \frac{3 \times 10^8}{1.0 \times 10^6} = 3 \times 10^{-7} \text{ m} = 300 \text{ nm}$，它属于紫外线。
 - 电焊工人作业时，需戴专业的防护头盔，可以保护电焊工人，防止受到紫外线的伤害。

5 能量量子化

◆ 练习与应用

1. 答案 由公式 $E = hf$ 得：电磁辐射的频率是 $\nu = \frac{E}{h} = \frac{6.63 \times 10^{-34} \times 3 \times 10^9}{6.32 \times 10^{-8}} = 7.4 \times 10^{19} \text{ Hz}$
 $\lambda = \frac{c}{\nu} = \frac{6.63 \times 10^{-34} \times 3 \times 10^9}{6.32 \times 10^{-8} \times 7.4 \times 10^{19}} = 2.69 \times 10^{-7} \text{ m}$

2. 答案 光子能量 $E = hf = \frac{6.63 \times 10^{-34} \times 3 \times 10^9}{6.32 \times 10^{-8}} \approx 3.14 \times 10^{-19} \text{ J}$
 每秒发射的光子个数为 $n = \frac{E}{h} = \frac{18 \times 10^{-34}}{6.63 \times 10^{-34}} = 2.73 \times 10^{10}$

3. 答案 “晶莹”的表面温度更高。因为温度越高，向外辐射的波长较短的电磁波越多。

◆ 复习与提高

A 组

1. 答案 导线中通电时，小铁针受地磁场的磁场方向由南北指向。沿南北方向的通电导线通电时，电流在导线下方小铁针位置产生的磁场是垂直方向，因此小铁针会转动。

2. 答案 A 点的感应强度方向垂直纸面方向，图略。

3. 答案 A 点的感应强度的方向由 A 指向 D。

4. 答案 （1）电磁感应强度是来来表示磁场强度和方向的物理量；
 （2）电磁感应强度只跟磁场的性质有关，而跟磁场中的通电导体是否受力无关；
 （3）只有通电导线与磁场方向垂直时，该处电磁感应强度的大小才是 $B = \frac{F}{IL}$。

5. 答案 （1）这个位置的磁感应强度大小为 $B = \frac{F}{IL} = 2.5 \times 0.01 = 0.25 \text{ T}$；
 （2）这一位置的磁感应强度不变。

6. 答案 线圈平面与磁场方向垂直时，穿过线圈的磁通量是 $\Phi = BS$；线圈绕 O 轴转过 60° 角，穿过线圈的磁通量是 $\Phi = BS \cos 60^\circ = \frac{1}{2} BS$；从初始位置转过 90° 角，穿过线圈的磁通量是 0。

7. 答案 $\Phi = BS = B \cdot \left(\frac{1}{2} \right)^2 = \frac{1}{4} BS^2$

B 组

1. 答案 （1）S N （2）用软磁性材料

2. 答案 在水平圆环运动过程中，从 M 到 N，穿过圆环的磁通量变大；从 N 到 P，磁通量变小；从 P 到 Q，磁通量变小；从 Q 到 L，磁通量变小。

3. 答案 （1）当合上开关 S 的一瞬间，线圈 P 的磁通量变大，有感应电流；
 （2）当断开开关 S 的一瞬间，线圈 P 的磁通量减小，有感应电流。

4. 答案 由安培定则，左、右两边的电控线圈的上端都是 N 极，下端都是 S 极，所以，O 点的磁场在纸面内，方向向下。

5. 答案

$B = \frac{B_s}{1 + \frac{L}{L_{ext}}}$

为了使 MN 中不产生感应电流，必须使穿过 $MDEN$ 构成的闭合回路的磁通量不变，即 $BS = B_s L'$，而 $S = L' + L_{ext}$，所以从 $t = 0$ 开始，$B = \frac{B_s L'}{L' + L_{ext}}$